Identification of QTL for Grain Size and Shape on the D Genome of Natural and Synthetic Allohexaploid Wheats with Near-Identical AABB Genomes
نویسندگان
چکیده
Grain size and shape associated with yield and milling quality are important traits in wheat domestication and breeding. To reveal the genetic factors on the D genome that control grain size and shape variation, we conducted analysis of quantitative trait loci (QTL) using the F2 and F2:3 populations derived from a common allohexaploid wheat line TAA10 and a synthetic allohexaploid wheat XX329, which have near-identical AABB genomes and different DD genomes. Based on genotyping using wheat 660K single nucleotide polymorphism (SNP) array, TAA10 and XX329 exhibited 96.55, 98.10, and 66.26% genetic similarities of A, B, and D genomes, respectively. Phenotypic evaluation revealed that XX329 had higher thousand grain weight (TGW), grain length, width, area and perimeter than TAA10 across all environments, and the grain yield per plot of XX329 increased by 17.43-30.36% compared with that of TAA10 in two environments. A total of nine environmentally stable QTL associated with grain size and shape were mapped on chromosomes 2D and 7D and verified using near isogenic lines (NILs), with the synthetic allohexaploid wheat XX329 contributing favorable alleles. Notably, a novel QTL QTgw.cau-2D controlling grain weight was first identified from the synthetic allohexaploid wheat, which may be a more desirable target for genetic improvement in wheat breeding. Collectively, these results provide further insights into the genetic factors that shaped the grain morphology during wheat evolution and domestication.
منابع مشابه
Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines
Synthetic hexaploid wheat is an effective genetic resource for transferring agronomically important genes from Aegilops tauschii to common wheat. Wide variation in grain size and shape, one of the main targets for wheat breeding, has been observed among Ae. tauschii accessions. To identify the quantitative trait loci (QTLs) responsible for grain size and shape variation in the wheat D genome un...
متن کاملIdentification of genomic loci controlling phenologic and morphologic traits in barley (Hordeum vulgare L.) genotypes using association analysis
Association mapping is a technique with high resolution for QTL mapping based on linkage disequilibrium and has shown more promising for describing genetically complex traits. In addition, it is a powerful tool for describing complex agronomic traits and identifying alleles that can contribute to enhance the desired traits. In this study, whole genome association mapping was used in a set of 14...
متن کاملComparison of genome-wide gene expression patterns in the seedlings of nascent allohexaploid wheats produced by two combinations of hybrids.
Allopolyploidization in plants is an important event that enhances heterosis and environmental adaptation. Common wheat, Triticum aestivum (AABBDD), which is an allohexaploid that evolved from an allopolyploidization event between T. turgidum (AABB) and Aegilops tauschii (DD), shows more growth vigor and wider adaptation than tetraploid wheats. To better understand the molecular basis for the h...
متن کاملUnveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice
Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...
متن کاملIndependent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes.
The origin of modern wheats involved alloploidization among related genomes. To determine if Aegilops speltoides was the donor of the B and G genomes in AABB and AAGG tetraploids, we used a 3-tiered approach. Using 70 amplified fragment length polymorphism (AFLP) loci, we sampled molecular diversity among 480 wheat lines from their natural habitats encompassing all S genome Aegilops, the putati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017